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Abstract. We present a computational study of the electronic structure of the stoichiometric
liquid zero-gap semiconductors Ag2S, Ag2Se and Ag2Te. The geometry of the fluids is described
by the primitive model of charged hard spheres; the electronic structure is modelled using a tight-
binding Hamiltonian. The density of states is computed considering the Madelung potential
fluctuations and the topological disorder characteristic of an ionic fluid. Only the introduction
of nonzero tight-binding hopping matrix elements—equivalent to the formation of chemical
bonds—induces a pseudogap between the chalcogenide conduction band and the silver valence
band. The Fermi level can be located in a region of a small density of states; eigenstates atEF

are likely to exhibit disorder-induced localization.

1. Introduction

Since Cutler’s statement that ‘Semiconducting liquids are a poorly understood class of
materials, as compared to others’ made in his landmark monograph on the subject [1], a
considerable amount of experimental work and theoretical reasoning has been devoted to
this unusual class of fluids [2]. For liquid semiconductors, conductivity values at stoichio-
metry lie below 5000 S cm−1 in a regime where the mean free path is of the order of the
interatomic separation [3]. Neither the simple picture of a gas of free electrons scattered by
atomic pseudopotentials withσ in excess of some thousand S cm−1—as in the Faber–Ziman
theory of liquid metals [4]—nor the ionic point of view of a well-separated anionic valence
and a cationic conduction band (withσ of the order of or less than 10 S cm−1) seems to
hold.

The silver chalcogenides Ag2X (with X = S, Se or Te) are typical examples of liquid
semiconductors. Conductivity values ofσ(Ag2S) = 280 S cm−1, σ(Ag2Se) = 400 S cm−1

andσ(Ag2Te) = 230 S cm−1 have been measured atT = 1273 K [5]. For all compounds,
the activation energy of the conductivity is close tokBT . The silver chalcogenides are often
referred to aszero-gap semiconductors. Above the melting point, the sign of dσe/dT shows
an unexpected behaviour: the electronic conductivity decreases with increasing temperature
for X = S and X= Se—a behaviour usually associated with a metallic character—whereas
dσe/dT is positive for Ag2Te, which should exhibit the least ionic character.

Located in the boundary region between metallic and nonmetallic fluids, two-component
liquid semiconductors exhibit an additional degree of freedom that determines the behaviour
of their conductivity. Above the demixing point, their composition can be varied
continuously from stoichiometry (Ag1−xXx with x = 1/3) to the pure metallic phase
(x = 0). Similar to the case for alkali–alkali halides [6] and the Csx [CsAu]1−x system,
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a nonmetal→metal transition is inevitable at a sufficiently highx. Recent work on liquid
silver chalcogenides covers neutron diffraction measurements [7] and a detailed study of
the conductivity, the thermopower and the magnetic susceptibility [8]; see also [2].

In this work, we focus on the computation of the electronic structure of liquid silver
chalcogenides at stoichiometry in the framework of a simple and transparent model. We
will not try to address the question of the anomalous slope of dσe/dT close to the melting
point, but study the computation of the number of charge carriers available close toEF ,
their localization character and the partial density of states, all of which are of relevance
when discussing transport properties. In the next section, details of the models and methods
applied will be given. Results are presented and discussed in the third section; conclusions
are derived in the last section.

Table 1. Parameters used in the Monte Carlo simulation and the electronic structure computation,
average electronic Madelung potentials〈VM 〉 and corresponding RMS fluctuations1VM .

Ag2S Ag2Se Ag2Te

ρ Å−3 0.046 0.044 0.039

σ+ Å 1.92 1.92 1.92
σ− Å 3.08 3.36 3.64

ε0
s+ eV −6.41 −6.41 −6.41

ε0
p+ eV −2.05 −2.05 −2.05

ε0
s− eV −20.80 −20.32 −17.11

ε0
p− eV −10.27 −9.53 −8.59

〈V +
M 〉 eV 9.75 7.18 8.64

〈V −
M 〉 eV −17.76 −16.88 −16.04

1V +
M eV 1.27 1.22 1.30

1V −
M eV 1.09 0.96 1.05

Tm
◦C 830–836 897± 3 860–877

2. Models and methods

To describe the geometry of liquid chalcogenides, we use the so-called primitive model of
charged hard spheres. Systems containing 432 ions have been simulated close to the melting
point using the standard Metropolis Monte Carlo method. The experimental densities have
been used; full formal charges ofzAg = 1 andzX = −2 have been assigned to the ions.
The simulation parameters are detailed in table 1. To avoid the costly Ewald summation in
the computation of the Madelung potentials, we have utilized the cut-off strategy of Adams
[9], ensuring both charge neutrality and a spherically symmetric potential. For each system,
we have performed 2500 Monte Carlo steps for equilibration and 2500 steps to provide 50
snapshots to be used within the electronic structure calculation.

The electronic structure is described by a tight-binding Hamiltonian

H =
∑
ia

ε0
iac

†
iacia +

∑
i 6=j,ab

tijabc
†
iacjb (2.1)
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with creation/annihilation operatorsc†
ia/cia acting upon atomic orbitals indexeda, b centred

at atom i, j . A set of one s and three p orbitals has been used for both the Ag and
the chalcogenide atom. Theε0

ia-parameters specifying the diagonal of the tight-binding
Hamiltonian are given by the corresponding ionization potentials. Numerical values are
listed in table 1. Harrison [10] has noted that the relative position of the diagonal energies
is remarkably close to a parametrization scheme using a combination of the Madelung
potentials, polarization energies and the ionization potential (cation) or the electron affinity
(anion). The present author has recently discussed the related parametrization problem for
liquid alkali halides [11]. In an ionic fluid, the Madelung potential—and consequently the
diagonal of the Hamiltonian matrix—becomes a function of the centre-of-mass coordinates
due to the underlying topological disorder [12, 13]. Potential energy fluctuations are of the
order of∼1 eV and have to be properly incorporated into the tight-binding scheme. As the
average site energies are well represented by the parametrization scheme described above,
we just consider fluctuations around these averages via

εia = ε0
ia − e2

4πε0

∑
j 6=i

zj

rij

+ 〈VM〉i . (2.2)

In practice, the sum in equation (2.2) is again evaluated using the Adams cut-off strategy
[9]. It has to be noted that the Madelung potential entering the Hamiltonian is defined as
the potential energy seen by an electronic test charge placed at sitei.

Figure 1. A snapshot of the Monte Carlo simulation of Ag2S. The sulphur ions are shaded; the
plotted sizes of the ions reflect half the hard-sphere diameter. For clarity, only ions in the range
0 6 z 6 rmax are shown.

For the off-diagonal hopping matrix elementstijab we have used the standardr−2-
parametrization of Harrison [10] at contact, falling off exponentially to meet the Pantelides
values for second-nearest neighbours [14]. For ionic solids, the latter determine the band
widths [14]. Neighbours are defined via the corresponding partial pair distribution functions;
a hopping matrix element cut-off between the second and the third shell of neighbours has
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been introduced. To diagonalize the resulting large sparse Hamiltonian matrices, a Lanczos
algorithm has been used [15, 16, 17].

3. Results and discussion

For Ag2X, a typical snapshot of the Monte Carlo simulation of the primitive model is
presented in figure 1. Short-range chemical order and charge cancellation is evident;
similar characteristics can be deduced from the partial pair distribution functions—not
plotted here—which unspectacularly resemble those of any 2:1 electrolyte in the regime
of a large MSA (mean-spherical approximation) coupling constant once polarization effects
are neglected [18]. A refined potential taking into account polarization effects is available
for Ag2Se [19]. We have nevertheless used the primitive model to study general trends
across the chalcogenide group of the periodic system with the simplest and most transparent
concepts possible.

The density of states in the absence of hopping—tantamount to breaking all chemical
bonds—is plotted in figure 2 for the three chalcogenides studied in this work. For X= S
and Se, the distinct peaks of the DOS are centred at the corresponding values of valence
orbital ionization potentials, withε0

X,s < ε0
X,p < ε0

Ag,s < ε0
Ag,p (cf. table 1). The centre of the

low-lying chalcogenide s band lies outside the range of figure 2; this band is of no practical
relevance to the following discussion. The diagonal density of states finds an excellent
representation as the sum of four Gaussians (see figure 2), with RMS fluctuations computed
from the raw data of the Monte Carlo simulation. It is interesting to note that the Gaussian
shape of the probability distribution function of the Madelung potential—as predicted by
all linear theories of fluids [12] and confirmed by computer simulations [13]—is obeyed
even in the case of strongly different ionic diameters and charges. The numerical values of
the Madelung potentials and their fluctuations are listed in table 1. Due to stronger local
ordering induced by a larger ionic charge, the (electronic) Madelung potential fluctuations
are about 0.2 eV smaller for anions than for cations.

Whereas band broadening induced by Madelung potential fluctuations does not change
the ionic character of molten alkali halides [11]—for all practical purposes, anion and cation
bands can be considered to be separated by an optical gap of the order of∼6 eV—their
impact upon the electronic structure is tremendous for the silver chalcogenides: the band
gap has ceased to exist. The Fermi level is pinned in a shallow minimum between the
chalcogenide p and the silver s band. The density of states atEF is of the order of that of
the maximum of the silver s band; inspecting the DOS one would presume nothing but a
metallic character for stoichiometric Ag2S and Ag2Se once a small amount of hopping is
introduced. Evidently, this finding not only contradicts the assumption that these materials
can be described by an ionic model, but also is in discord with all of the experimental work
referenced above. The situation can be considered as even worse for Ag2Te: the silver s
and the tellurium p band have merged almost completely; the Fermi level is located deep
within the resulting band.

To resolve this problem, one may check whether the simple diagonal approximation—
neglecting the hopping term in equation (2.1)—is as valid for the silver chalcogenides as
it is for simple ionic fluids. Introducing chemical bonds according to the rules specified in
section 2 and diagonalizing the resulting Hamiltonians, we find the DOS displayed in figure
3. For all chalcogenides, the Fermi level now lies in a deep minimum of the density of states;
valence and conduction bands can be identified clearly. In a simplified picture, hopping leads
to the formation of a bonding band—lowering the energies of the chalcogenide p band—and
an antibonding band—shifting the energies of the silver s band to higher energies [1]. The
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Figure 2. The densities of states of the silver chalcogenides in the diagonal approximation
(◦). (a) Ag2S, (b) Ag2Se and (c) Ag2Te. Dotted line: the Gaussian approximation to the
DOS contribution; solid line: the corresponding sum. The Fermi levels are indicated by arrows.
Energy is in electron volts; DOS is in number of eigenstates per electron volt and atom.

combination of the two effects opens a pseudogap, in whichEF now lies. We note that
DOS(EF )(S) ' DOS(EF )(Se) ' DOS(EF )(Te)/2, indicating a trend towards a stronger
metallic character (not necessarily implying metallic conduction) moving down the periodic
system of elements.

Once the eigenvectors of the model system are known, a population analysis can be
performed [20]. Here, we are interested in the contribution of chalcogenide or silver atomic
orbitals to the valence and the conduction band once chemical bonds are formed. This
implies the question of whether the resulting bands can still be considered as ionic. The
charge order at a given energyEα is defined by

qα =
∑
ia

′
a2

iaα (3.1)

where the sum is restricted to the orbital type of interest andaiaα denotes the expansion
coefficient of the eigenfunction|α〉 in terms of atomic orbitals. The definition of the charge
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Figure 3. The density of states of the silver chalcogenides in the presence of chemical bonding.
(a) Ag2S, (b) Ag2Se and (c) Ag2Te. The Fermi levels are indicated by arrows. Energy is in
electron volts; DOS is in number of eigenstates per electron volt and atom.

order—and the charge resulting from the summation of allqα up to the Fermi level—is not
unique. In the terminology of solid-state physics, the product ofqα and the DOS(E) is the
partial density of states, PDOS(E).

For Ag2S, the charge orders as a function of the energy aroundEF are displayed in figure
4. The sulphur p charge order has a value ofqS,p ' 0.8 close to the maximum of the valence
band DOS, increases slightly with increasing energy and drops off steeply while crossing
the Fermi level. The silver s charge shows a similar behaviour in the conduction band. A
maximum ofqAg,s ' 0.8 is found close to the s-band shoulder in the conduction band; the
charge order decreases with decreasing energy and is reduced to a residual ofqAg,s ' 0.1
on crossing the Fermi level. The silver p contribution is small, but not negligible close
to the Fermi level. As expected, its value ascends onceqAg,s drops off in the conduction
band. There is little to no contribution of sulphur s orbitals to eigenfunctions close to the
Fermi level. The values of charge orders observed within the bulk of the bands are typical
for ionic systems; using the same form of analysis, it is hardly possible to observe a charge
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Figure 4. Dimensionless sulphur p (×), silver s (◦) and silver p (chain line) charge order for
Ag2S as functions of energy. The Fermi level is indicated by an arrow. Energy is in electron
volts.

order in excess of 0.8 for the alkali halides [21].
From a fundamental theorem of Anderson [22], all eigenstates of a disordered system

become localized if the strength of disorder exceeds a specific value. Systems with a
moderate disorder exhibit mobility edges, separating regions in the density of states that are
governed by localized states from regions containing extended states [23]. Whenever the
Fermi level lies in a region of localized states, the system shows a nonmetallic (insulating
or semiconducting) character; electronic transport is enabled only by thermally activated
processes. Localization is usually favoured by a small density of states, a strong p charge
order and an antibonding character of the eigenfunction [24]. It is not unlikely that liquid
silver chalcogenide eigenstates at the Fermi level are localized due to the topological disorder
and Madelung potential fluctuations characteristic of liquid ionic alloys. As a measure of
localization, we consider the inverse participation ratio (IPR), defined as

IPRα =
∑
ia

a4
iaα. (3.2)

Its inverse—the participation ratio—is a rough approximation of the number of orbitals over
which a wavefunction is spread. For eigenstates confined to a single atomic orbital, the IPR
equals one. Fermi level IPRs computed for the materials studied in this work range from
0.22 (Ag2Te) to 0.33 (Ag2S and Ag2Te), typical of localization over a small fraction of the
size of the system.

4. Conclusions

We have presented a numerical study of the liquid zero-gap semiconductors Ag2X, with
X = S, Se and Te. The interionic interactions have been—simplistically—described by
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the primitive model of charged hard spheres. Geometries have been generated by a Monte
Carlo simulation; the electronic structure of the resulting centre-of-mass configurations has
been computed using a tight-bindingansatz.

The presence of Madelung potential disorder—characteristic of molten ionic fluids—
broadens the valence and the conduction band to such a degree that a considerable band
overlap occurs if the formation of chemical bonds is neglected. On switching on electron
hopping in a computer experiment, chalcogenide and silver bands are shifted by the
formation of bonding and antibonding orbitals, leading to the opening of a pseudogap,
in which the Fermi level now lies. A population analysis has confirmed the ionic character
of the liquid. States at the Fermi level are likely to be localized by Anderson disorder.
Any quantitative comparison to experimentally determined transport properties beyond the
statement that the silver chalcogenides nontrivially exhibit a nonmetallic character would
require the computation both of the DOS and of the electron mobility aroundEF .

In the case of liquid silver chalcogenides, partial covalency [25] is not only compatible
with an ionic picture of the chemical bond in these materials, but is absolutely essential for
the formation of a pseudogap and thus plays a major role in enforcing the ionic character
of these materials.
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[17] Koslowski Th and von Niessen W 1993J. Comput. Chem.7 769
[18] Wilson M and Madden P A 1993J. Phys.: Condens. Matter5 6833 and references therein
[19] Rino J P, Hornos Y M M, Antonio G A, Ebbsj̈o I, Kalia R K and Vashishta P 1988J. Chem. Phys.89 7542



The electronic structure of liquid silver chalcogenides 7039

[20] Mulliken R S 1949J. Chem. Phys.46 675
[21] Koslowski Th 1996 unpublished
[22] Anderson P W 1958Phys. Rev.109 1492
[23] Ziman J M 1969J. Phys. C: Solid State Phys.2 1230

Mott N F and Davies E 1971Electronic Processes in Non-crystalline Solids(Oxford: Oxford University
Press)

[24] Koslowski Th and von Niessen W 1992J. Phys.: Condens. Matter4 1093, 6109; 1991Phys. Rev.B 44
9926

[25] Defining ionicity and covalency, we share the point of view of
Catlow C R A andStoneham A M 1983 J. Phys. C: Solid State Phys.16 4321
that ‘Most scientists hold clear views onionicity and covalency. If they all held the same view as their

colleagues, this paper would be unnecessary.’


